Abstract

BackgroundVascular calcification (VC) is primarily studied using cultures of vascular smooth muscle cells. However, the use of very different protocols and extreme conditions can provide findings unrelated to VC. In this work we aimed to determine the critical experimental parameters that affect calcification in vitro and to determine the relevance to calcification in vivo.Experimental Procedures and ResultsRat VSMC calcification in vitro was studied using different concentrations of fetal calf serum, calcium, and phosphate, in different types of culture media, and using various volumes and rates of change. The bicarbonate content of the media critically affected pH and resulted in supersaturation, depending on the concentration of Ca2+ and Pi. Such supersaturation is a consequence of the high dependence of bicarbonate buffers on CO2 vapor pressure and bicarbonate concentration at pHs above 7.40. Such buffer systems cause considerable pH variations as a result of minor experimental changes. The variations are more critical for DMEM and are negligible when the bicarbonate concentration is reduced to ¼. Particle nucleation and growth were observed by dynamic light scattering and electron microscopy. Using 2mM Pi, particles of ~200nm were observed at 24 hours in MEM and at 1 hour in DMEM. These nuclei grew over time, were deposited in the cells, and caused osteogene expression or cell death, depending on the precipitation rate. TEM observations showed that the initial precipitate was amorphous calcium phosphate (ACP), which converts into hydroxyapatite over time. In blood, the scenario is different, because supersaturation is avoided by a tightly controlled pH of 7.4, which prevents the formation of PO4 3--containing ACP.ConclusionsThe precipitation of ACP in vitro is unrelated to VC in vivo. The model needs to be refined through controlled pH and the use of additional procalcifying agents other than Pi in order to reproduce calcium phosphate deposition in vivo.

Highlights

  • Medial vascular calcification (MVC) is a degenerative process inherent in some congenital disorders, and it is common in type 2 diabetes, chronic kidney disease (CKD), and the elderly [1,2]

  • These nuclei grew over time, were deposited in the cells, and caused osteogene expression or cell death, depending on the precipitation rate

  • TEM observations showed that the initial precipitate was amorphous calcium phosphate (ACP), which converts into hydroxyapatite over time

Read more

Summary

Introduction

Medial vascular calcification (MVC) is a degenerative process inherent in some congenital disorders, and it is common in type 2 diabetes, chronic kidney disease (CKD), and the elderly [1,2]. In the case of CKD, additional hyperphosphatemia (complicated by secondary hyperparathyroidism and uremic toxins) has been described as an independent risk factor for the development of MVC [3]. The pathogenesis of this ectopic calcification has been intensely studied over the last fifteen years, and the results of studies show the occurrence of critical phenomena such as the transdifferentiation of vascular smooth muscle cells (VSMC) into osteoblast-like cells, apoptosis, and the formation of matrix vesicles and apoptotic bodies that increase nanocrystal deposition, among other phenomena [1,2,4,5,6]. In this work we aimed to determine the critical experimental parameters that affect calcification in vitro and to determine the relevance to calcification in vivo

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call