Abstract

Microscopic oil displacement of water flooding and sweep efficiency of continuous gas injection could be improved by water alternating gas (WAG) injection. The WAG injection process aims to squeeze more oil out of the reservoirs; in this method, water and gas are alternatively injected into the reservoir. Also, availability of hydrocarbon or CO2 gases in the field makes it attractive for gas-based enhanced oil recovery (EOR) methods such as water alternating gas (WAG) injection. Conducting some simulations are required to optimize EOR methods for investigating the effect of parameters affecting WAG injection. Reducing and controlling the mobility ratio, creating stable front, and preventing early fingering of gas are the advantages of water alternating gas injection, which have promoted extensive applications throughout the world. Critical parameters, including WAG ratio, injection rates, gas composition variation, cycle times and some others which affect the WAG injection as an enhanced oil recovery method are studied thoroughly in this paper. Because of higher mobility of water relative to gas, injected water has more efficiency, but the excess use of water will cause early breakthrough. This study suggests that injecting proper volume at suitable times with different rates during injection time provides a 10 -15 % improvement in the recovery factor for one pore volume which is injected by using commercial reservoir simulator ECLIPSE 300. The best rate variation during a cycle time of WAG injection and choosing of first injection phase are discussed in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call