Abstract

Two-step nucleation, in which a metastable intermediate phase acts as a precursor for nucleating a thermodynamically stable phase, has been widely observed in many materials systems and solid-state reactions. Among the advantages of two-step nucleation is that the stable phase may nucleate heterogeneously at the hetero-phase interface between the original and the precursory phases. Although heterogeneous nucleation (HN) theories for homo-phase grain boundaries and inert surfaces are well established, our understanding of HN at reactive hetero-phase interfaces remains incomplete. This deficiency stems from the discontinuity of the chemical potential driving force across the hetero-phase interface, which profoundly affects the fundamental properties of the nucleus in a way that is not properly accounted for in existing models. Herein, we incorporate these effects to extend the classical nucleation theory to HN at hetero-phase interfaces. Our extended model demonstrates that the nucleus shape along the minimum energy path is strongly size-dependent, and this additional degree of freedom can result in the reduction of the critical nucleus volume and associated activation energy barrier by orders of magnitude relative to conventional predictions. The simulation results are used to construct a sensitivity map in the parameter space of interfacial energy and bulk driving force ratios, which quantifies the difference in nucleation barriers predicted by different models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.