Abstract

The critical nuclear charge Z(c) required to bind a nucleus plus two electrons in a heliumlike atom has recently been an area of active study, resulting in a disagreement with earlier calculations and with the value obtained from the radius of convergence 1/Z* of a 1/Z expansion of the energy. In order to resolve the disagreement, have performed high-precision variational calculations in Hylleraas coordinates. With the double basis set method, we have been able to obtain good convergence for Z very close to Z(c), which together with the Hellmann-Feynman theorem yields the value Z(c) = 0.911,028,224,077,255,73(4), corresponding to 1/Z(c) = 1.097,660,833,738,559,80(5). This value is in agreement with the value obtained by Baker et al. [Phys. Rev. A 41, 1247 (1990)]. A significant feature of the results is that the outer electron remains localized near the nucleus, even at Z = Z(c), and the bound state evidently changes smoothly into a shape resonance for Z<Z(c). A qualitative polarization potential is proposed to account for the resonance, and the radial distribution function for the electron density is calculated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.