Abstract
Recently we showed that the critical nonequilibrium relaxation in the Swendsen-Wang algorithm is widely described by the stretched-exponential relaxation of physical quantities in the Ising or Heisenberg models. Here we make a similar analysis in the Berezinsky-Kosterlitz-Thouless phase transition in the two-dimensional (2D) XY model and in the first-order phase transition in the 2D q=5 Potts model and find that these phase transitions are described by the simple exponential relaxation and power-law relaxation of physical quantities, respectively. We compare the relaxation behaviors of these phase transitions with those of the second-order phase transition in the three- and four-dimensional XY models and in the 2D q-state Potts models for 2≤q≤4 and show that the species of phase transitions can be clearly characterized by the present analysis. We also compare the size dependence of relaxation behaviors of the first-order phase transition in the 2D q=5 and 6 Potts models and propose a quantitative criterion on "weakness" of the first-order phase transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physical review. E, Statistical, nonlinear, and soft matter physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.