Abstract

Post-translational modifications by small ubiquitin-like modifiers (SUMOs) are dysregulated in many types of cancers. The SUMO E1 enzyme has recently been suggested as a new immuno-oncology target. COH000 was recently identified as a highly specific allosteric covalent inhibitor of SUMO E1. However, a marked discrepancy was found between the X-ray structure of the covalent COH000-bound SUMO E1 complex and the available structure-activity relationship (SAR) data of inhibitor analogues due to unresolved noncovalent protein-ligand interactions. Here, we have investigated noncovalent interactions between COH000 and SUMO E1 during inhibitor dissociation through novel Ligand Gaussian accelerated molecular dynamics (LiGaMD) simulations. Our simulations have identified a critical low-energy non-covalent binding intermediate conformation of COH000 that agreed excellently with published and new SAR data of the COH000 analogues, which were otherwise inconsistent with the X-ray structure. Altogether, our biochemical experiments and LiGaMD simulations have uncovered a critical non-covalent binding intermediate during allosteric inhibition of the SUMO E1 complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.