Abstract

We extend an abstract agent-based swarming model based on the evolution of neural network controllers, to explore further the emergence of swarming. Our model is grounded in the ecological situation, in which agents can access some information from the environment about the resource location, but through a noisy channel. Swarming critically improves the efficiency of group foraging, by allowing agents to reach resource areas much more easily by correcting individual mistakes in group dynamics. As high levels of noise may make the emergence of collective behavior depend on a critical mass of agents, it is crucial to reach sufficient computing power to allow for the evolution of the whole set of dynamics in simulation. Since simulating neural controllers and information exchanges between agents are computationally intensive, to scale up simulations to model critical masses of individuals, the implementation requires careful optimization. We apply techniques from astrophysics known as treecodes to compute the signal propagation, and efficiently parallelize for multi-core architectures. Our results open up future research on signal-based emergent collective behavior as a valid collective strategy for uninformed search over a domain space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.