Abstract

Experiments in heavy-fermion metals and related theoretical work suggest that critical local-moment fluctuations can play an important role near a zero-temperature phase transition. We study such fluctuations at the quantum critical point of a Kondo impurity model in which the density of band states vanishes as /epsilon/(r) at the Fermi energy (epsilon=0). The local spin response is described by a set of critical exponents that vary continuously with r. For 0<r<1, the dynamical susceptibility at the critical point exhibits omega/T scaling with a fractional exponent, implying that the critical point is interacting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.