Abstract

Aqueous zinc-ion batteries (ZIBs) are gaining significant attention for their numerous advantages, including high safety, high energy density, affordability, and environmental friendliness. However, the development of ZIBs has been hampered by the lack of suitable cathode materials that can store Zn2+with high capacity and reversibility. Currently, vanadium-based materials with tunnel or layered structures are widely researched owing to their high theoretical capacity and diversified structures. However, their long-term cycling stability is unsatisfactory because of material dissolution, phase transformation, and restrictive kinetics in aqueous electrolytes, which limits their practical applications. Different from previous reviews on ZIBs, this review specifically addresses the critical issues faced by vanadium-based cathodes for practical aqueous ZIBs and proposes potential solutions. Focusing on vanadium-based cathodes, their ion storage mechanisms, the critical parameters affecting their performance, and the progress made in addressing the aforementioned problems are also summarized. Finally, future directions for the development of practical aqueous ZIB are suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.