Abstract

Critical initial conditions for thermal ignition are calculated numerically for planar, cylindrical and spherical geometries. In each case a comparison is made on the bifurcation diagram with the intermediate steady state(s). It is clearly seen that the actual critical initial condition which depends upon the initial temperature profile, is partly below the intermediate steady state(s). The variation with ambient temperature, exothermicity and Biot number are all explicitly shown. The results are important for calculations relevant to the critical hot product assembly problem where a hot manufactured organic product is packed into containers or stockpiled at a subcritical ambient storage temperature. An example calculation for an interesting case study (milk powder) is given to illustrate the utility of our results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.