Abstract

The hydrogen embrittlement susceptibility of two precipitation hardened nickel-based alloys was studied. Conventional slow strain rate testing results are compared against data obtained from a modified Rising Step Loading Test with interrupted hydrogen charging to determine the role of defects in the passive layer caused by local straining. The results obtained in these tests, show that the elongation to failure for most cases was independent of the testing methodology. XPS and EIS studies indicate changes to the passive film structure caused by CP. These results imply that during hydrogen charging, the passive film is partially dissolved facilitating hydrogen uptake.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.