Abstract

An experimental study has been performed to investigate boiling mechanism and to estimate critical heat removal rate from a critical power through a hemispherical narrow gap using distilled water and Freon R-113. The distilled water data on the critical heat removal rate were compared with the R-113 data. The experimental results on the critical heat removal rate were also compared with the existing correlations, developed in flat plate, annuli, and spherical gaps. The test results have shown that a CCFL (Counter Current Flow Limitation) brings about local dryout and finally global dryout in the hemispherical gap thickness of 0.5, 1.0, and 2.0 mm. The boiling mechanism in a hemispherical gap thickness of 5.0 mm is the combination of the CCFL and the pool boiling condition. An increase in gap thickness of 10.0 mm leads to the pool boiling condition rather than the CCFL. Increases in the gap thickness and pressure lead to increase in critical heat removal rate, but the pressure effect on the critical heat removal rate was found to be much milder than the predictions by flat plate and annuli gaps. The measured critical heat removal rate using the R-113 in hemispherical narrow gap thickness of 1.0 and 2.0 mm are 51.5%, 44.5% lower than that using the distilled water due to the lower boiling point and the bubble size, which is different from the pool boiling condition of approximately 14.8%. The measured critical heat removal rate using the R-113 in a gap thickness of 5 mm is 21.6% lower than that using distilled water, which approaches to the pool boiling condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call