Abstract

Empirical data are presented which show the effects of diameter, water velocity, and subcooling on the critical heat flux from an electrically heated, cylindrical lube or wire. The maximum flux which can be accommodated in subcooled nucleate boiling is found to vary directly with the water velocity and subcooling and inversely with a fractional power of the heater diameter. The exponent which describes the diameter dependence is itself a function of both velocity and subcooling. Measurements of the critical flux are reported for water at atmospheric pressure over a range of subcooling from 3 to 100 deg F, velocity from 0.5 to 11 ft/sec, and heater diameter from 0.010 to 0.189 in. Visual and photographic observations indicate a marked effect of subcooling on the flow mechanism near the critical heat flux. High subcooling prevents the formation of the vapor cavity which was described in the previous paper [1] for nearly saturated water, although the failure of nucleate boiling still occurs at the rear of the cylinder and is accompanied by a concentration of vapor in that region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.