Abstract

An arithmetical structure on a finite, connected graph without loops is given by an assignment of positive integers to the vertices such that, at each vertex, the integer there is a divisor of the sum of the integers at adjacent vertices, counted with multiplicity if the graph is not simple. Associated to each arithmetical structure is a finite abelian group known as its critical group. Keyes and Reiter gave an operation that takes in an arithmetical structure on a finite, connected graph without loops and produces an arithmetical structure on a graph with one fewer vertex. We study how this operation transforms critical groups. We bound the order and the invariant factors of the resulting critical group in terms of the original arithmetical structure and critical group. When the original graph is simple, we determine the resulting critical group exactly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.