Abstract

The critical flow principle is a useful approach for the hydraulic analysis of round-crested weirs due to their single head-discharge relationships. The hydraulics of circular-crested weirs is examined using simplified models incorporating streamline curvature effects, comparing their predictions with experimental data. A generalized one-dimensional model based on the critical flow in curvilinear motion has been developed. The discharge coefficient increases with the specific energy normalized with the radius of curvature, E∕R, when streamline curvature effects are included. The relative flow depth at the crest decreases as E∕R increases. The flow at the weir crest is only critical for a normalized specific energy value of E∕R≈0.5–0.6. For larger heads, the flow at the weir crest has been found to be supercritical.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.