Abstract

Using various stimulus areas and luminances we measured monocular critical flicker frequency (CFF) as a function of eccentricity in the temporal visual field. With constant stimulus area and luminance, CFF was not independent of visual field location. When stimulus area was scaled by the magnification factor of the human striate cortex to produce equal cortical stimulus areas from different retinal locations, CFF increased monotonically with increasing eccentricity. Hence, CFF cannot be made independent of visual field location by spatial M-scaling. However, when also retinal illuminance was M-scaled by reducing stimulus luminance in inverse proportion to Ricco's area at each eccentricity, CFF became independent of visual field location.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.