Abstract
Antiferroelectrics have been recently sparking interest due to their potential use in energy storage and electrocaloric cooling. Their main distinctive feature is antiferroelectric switching, i.e., the possibility to induce a phase transition to a polar phase by an electric field. Here, we investigate the switching behavior of the model antiferroelectric perovskite PbZrO3 using thin films processed by chemical solution deposition in different geometries and orientations. Both out-of-plane and in-plane switching configurations are investigated. The critical field is observed to be highly dependent on the direction of the electric field with respect to the film texture. We show that this behavior is qualitatively consistent with a phase transition to a rhombohedral polar phase. We finally estimate the importance of crystallite orientation and film texturation in the variations observed in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.