Abstract

Doping is one of the most prominent techniques to alter properties of a given material. Herein, the influence of the electron- and hole-doping on the selected superconducting properties of graphene are considered. In details, the Migdal-Eliashberg formalism is employed to analyze the specific heat and the critical magnetic field in the representative case of graphene doped with nitrogen or boron, respectively. It is found that the electron doping is much more favorable in terms of enhancing the aforementioned properties than its hole counterpart. These findings are appropriately summarized by the means of the dimensionless thermodynamic ratios, familiar in the Bardeen-Cooper-Schrieffer theory. To this end, the perspectives for future research on superconductivity in graphene are drawn.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call