Abstract

FePt/Fe perpendicular exchange-coupled bilayers with different Fe thicknesses were prepared to study the exchange coupling effect and the magnetization switching mechanism. An Fe thickness of 3nm was found to be the critical point where the coercivity reduction became saturated and had the largest thermal stability gain factor of 2.25. This thickness was close to the exchange length between the magnetically hard and soft layers. Within the exchange length the soft phase strongly coupled to the hard phase and the magnetization of the bilayer processed single switching; beyond the exchange length reversible magnetization increased with the Fe thickness and exchange spring effect was found. Our simulation results also revealed that the exchange length was the critical Fe thickness for effective coercivity reduction and for maintaining high remanence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.