Abstract

In order to develop the thermodynamic database containing rare earth sesquioxides (RE2O3), accurate thermodynamic descriptions of all stable and metastable RE2O3 phases are required. Rare earth sesquioxides have five polymorphs, which are (from low to high temperature) the cubic phase (C), the monoclinic phase (B), the hexagonal phase (A), the high temperature hexagonal phase (H), and the high temperature cubic phase (X). However, the thermodynamic property data of all polymorphs available in the literature are insufficient. In particular, the thermodynamic data for the phases stable only at high temperatures and for metastable phases are not well investigated. In this study, all ∆H298Ko, S298Ko, CP (or heat content) and phase transition temperature (Ttr) data available in the literature for each rare earth sesquioxide were collected and critically evaluated based on the sample preparations, experimental procedures and characterization techniques. Relationships between ∆H298Ko, S298Ko, and Ttr against the ionic radii of the entire rare earth cations were then established and missing thermodynamic information was predicted based on the general trends. In these ways, the accurate and consistent Gibbs energies of all stable and metastable RE2O3 phases (RE = La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y and Sc) were prepared. These Gibbs energy data can be readily used for the development of a comprehensive thermodynamic database containing rare earth oxides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.