Abstract
An experimental study of principal strains and deflections of glass fiber-reinforced polymer (GFRP) composite bridge deck systems is presented. The experimental results are shown to correlate well with those of an analytical model. While transverse strains and vertical deflections are observed to be consistent, repeatable, and predictable, longitudinal strains exhibit exceptional sensitivity to both strain sensor and applied load location. Large, reversing strain gradients are observed in the longitudinal direction of the bridge deck. GFRP deck system geometry, connectivity, material properties, and manufacturing imperfections coupled with the observed strains suggest that the performance of these structures should be assessed under fatigue loading conditions. Recommendations for accurately assessing longitudinal strain in GFRP bridge decks are made, and a review of existing data is suggested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.