Abstract
Abstract: Over the past 10 years the Rosgen classification system and its associated methods of “natural channel design” have become synonymous to some with the term “stream restoration” and the science of fluvial geomorphology. Since the mid 1990s, this classification approach has become widely adopted by governmental agencies, particularly those funding restoration projects. The purposes of this article are to present a critical review, highlight inconsistencies and identify technical problems of Rosgen’s “natural channel design” approach to stream restoration. This paper’s primary thesis is that alluvial streams are open systems that adjust to altered inputs of energy and materials, and that a form‐based system largely ignores this critical component. Problems with the use of the classification are encountered with identifying bankfull dimensions, particularly in incising channels and with the mixing of bed and bank sediment into a single population. Its use for engineering design and restoration may be flawed by ignoring some processes governed by force and resistance, and the imbalance between sediment supply and transporting power in unstable systems. An example of how C5 channels composed of different bank sediments adjust differently and to different equilibrium morphologies in response to an identical disturbance is shown. This contradicts the fundamental underpinning of “natural channel design” and the “reference‐reach approach.” The Rosgen classification is probably best applied as a communication tool to describe channel form but, in combination with “natural channel design” techniques, are not diagnostic of how to mitigate channel instability or predict equilibrium morphologies. For this, physically based, mechanistic approaches that rely on quantifying the driving and resisting forces that control active processes and ultimate channel morphology are better suited as the physics of erosion, transport, and deposition are the same regardless of the hydro‐physiographic province or stream type because of the uniformity of physical laws.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: JAWRA Journal of the American Water Resources Association
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.