Abstract

Ultrasonic shear measurements were conducted on polystyrene-cyclohexane solutions at 3, 51, and 252 kHz using the crystal fork and torsion methods. The real and imaginary parts of the complex shear modulus above the critical point are compared with modified theoretical expressions derived within the framework of the decoupled-mode theory. For this comparison, a background part was assumed to be described by a scaling form proposed by de Gennes. Numerical analysis of the data shows a satisfactory agreement between the theory and the experiments for ultrasonic shear data over a wide range of reduced frequencyω ... In addition, it is shown that the description of the simple viscosity dynamical scaling function is broken at a high-frequency limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.