Abstract

Effective optimization of the production of Ti-6Al-4 V using AM requires a fundamental understanding of the relative importance of different microstructural features to the deformation and failure mechanisms, particularly features that vary between production methods. In this study, the tensile response and deformation mechanisms of electron beam melted (EBM) AM Ti-6Al-4 V material loaded in different orientations and produced using various powder sizes were compared to those of selective laser melted (SLM) AM Ti-6Al-4 V material. The density and morphology of pores, phase fractions, prior-β grains, and defect microstructures were evaluated using scanning electron microscopy, X-ray computed tomography, electron backscatter diffraction, and transmission electron microscopy before and after deformation. The results were used to evaluate the relative importance of each feature on strengthening, deformation, and failure initiation mechanisms. Results focused primarily on coarse-powder EBM materials indicated that phase distribution and defect density were most influential for determining material yield strength as well as maximum possible strain to failure. Porosity was lower overall in EBM Ti-6Al-4 V than in SLM, allowing for occasional increases in part strain to failure, but remained a limiting factor determining overall part ductility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.