Abstract
An experimental investigation has been undertaken to elucidate the existence of a critical diameter forthe transmission of gaseous detonation into a porous medium. A Chapman-Jouguet (CJ) detonation is first established in a tube and allowed to transmit through an orifice plate into a porous medium comprised of inert spheres of equal diameter. It is found that detonation can successfully transmit past the orifice for diameters much smaller than the normal critical diameter (dc) of the mixture. An immediate transition from detonation to quasi-detonation normally takes place upon wave entry in the porous medium. Failure of detonation is observed to take place downstream of the orifice in the near-limit regime and is followed by deflagration to detonation transition (DDT) within the porous medium. Wave velocities in the porous medium are found to be identical to the corresponding values measured for direct transmission (without an orifice). For subcritical conditions, there is complete quenching of combustion in the pores. The critical composition (lean and rich) for mixtures with high activation energy is found to be practically the same as the propagation limits in the porous medium without an orifice. This indicates that the phenomenon is governed by the smallest physical dimension of the pore size, and thus a local failure mechanism exists. In mixtures highly diluted with argon, i.e., (C2H2−O2)+75% Ar, which have a lower activation energy and for which the “dc=13λ” correlation (where λ is the cell size) is known to break down, the critical composition appears to depend on the orifice diameter. The orifice now introduces a larger controlling length scale at the limits compared to the pore size, indicating that a global failure mechanism may prevail for such mixtures. Present findings are consistent with a local and global failure mechanism for normal detonation failure recently proposed by Lee.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.