Abstract

A generic proof has been given that, for the acoustic mode with the highest velocity in a plasma comprising a number of fluid species and one kind of inertialess electrons, even though there can be critical densities (making the coefficient of the quadratic nonlinearity in a Korteweg–de Vries equation vanish), no supercritical densities exist (requiring the simultaneous annulment of both the quadratic and cubic nonlinearities in a reductive perturbation treatment). Similar conclusions hold upon expansion of the corresponding Sagdeev pseudopotential treatment. When there is only one (hot) electron species, the highest-velocity mode is an ion-acoustic one, but if there is an additional cool electron species, with its inertia taken into account, the highest-velocity mode is an electron-acoustic mode in a two-temperature plasma. The cool fluid species can have various polytropic pressure–density relations, including adiabatic and/or isothermal variations, whereas the hot inertialess electrons are modelled by extensions of the usual Boltzmann description that include non-thermal effects through Cairns, kappa or Tsallis distributions. Together, in this way quite a number of plasma models are covered. Unfortunately, there seems to be no equivalent generic statement for the slow modes, so that these have to be studied on a case-by-case basis, which for models with more than three species is far from straightforward, given the parameter ranges to be discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call