Abstract

We investigate numerically the critical current of two-dimensional fully frustrated arrays of resistively shunted Josephson junctions at zero temperature. It is shown that a domino-type mechanism is responsible for the existence of a critical current lower than the one predicted from the translationally invariant flux lattice. This domino mechanism is demonstrated for uniform-current injection as well as for various busbar conditions. It is also found that inhomogeneities close to the contacts make it harder for the domino propagation to start, which increases the critical current towards the value based on the translational invariance. This domino-type vortex motion can be observed in experiments as voltage pulses propagating from the contacts through the array.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call