Abstract

The critical current densities (Jc) and stabilities of Tube Type Nb3Sn conductors have been measured. The strands had superconducting subelement counts ranging from 192 to 744, and flat-to-flat filament sizes (for 0.7mm OD wire) of from 35μm down to 15μm. These Tube Type conductors had a very simple structure: prior to heat treatment the filaments consist of a Sn core surrounded by a thin Cu tube, itself surrounded by a Nb or Nb alloy tube. Eight different strand types were investigated using various techniques including SEM, residual resistance ratio (RRR), transport Jc, and stability measurement. Most strands were studied at 0.7mm OD, with one representative at 0.42mm. The transport measurements were made at 4.2K in fields up to 14T. Numerous heat treatment schedules were investigated, with reaction temperatures ranging from 615°C to 650°C, and times ranging from 36–500h. The highest Jcs were seen for the lowest reaction temperatures, with 12 T transport Jc values as high as 2450 A/mm2 observed. The RRRs were lower for longer time and higher temperature reactions and ranged from 4 to 180. Strand stability was a strong function of the effective filament diameter, deff, and RRR. The most stable strands showed stability currents, Js, of 8700A/mm2 and 15,300A/mm2 for 0.7mm OD and 0.42mm OD conductors, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.