Abstract

Irradiation effects are often used to improve the effective pinning in superconductors, but sometimes they can reveal detrimental for superconducting properties. Fe(Se,Te) has been proven to be a very robust material against irradiation, in particular proton irradiation, thus configuring as an ideal material to work in harsh environments such as particle accelerators or fusion reactors. Anyway, the study of the pinning activation energy in Fe(Se,Te) thin film irradiated by 3.5 MeV protons suggests that this treatment can modify the anisotropy of the films pinning. Thus here we present the result of further investigation analyzing the effect of proton irradiation on the critical current and the pinning force both for the magnetic field applied parallel and perpendicular to the sample surface. We find that, although a slight effect on the critical current anisotropy is observed, the pinning landscape is not affected by the irradiation process. This confirms that Fe(Se,Te) can be considered for devices working in harsh environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call