Abstract

Significant stress changes caused by sorption-induced swelling raise the coal wellbore failure potential, which directly impacts the safety and sustainability of CO2 enhanced coalbed methane (CO2-ECBM). Additionally, a mixture gas (CO2/N2) injection is recommended due to the sharp decline of permeability with pure CO2 injection. In this study, incorporating the impacts of mixture gas adsorption and poroelastic effects, a semi-analytical model of coal wellbore stability during mixture gas injection is proposed. Model results indicate that the stress field is significantly influenced by the boundary condition and sorption effect. In addition, parametric studies are performed to determine the influence of adsorption parameters, mechanical properties, and gas composition on the stress distribution and then on the wellbore failure index. Furthermore, mixture gas injection with a large proportion of CO2 or N2 both cause wellbore instability. Significant compressive hoop stress and shear failure are caused by the mixture gas injection with a large proportion of CO2. In contrast, the displacement of CH4 with weakly adsorptive N2 will result in less compressive and even tensile hoop stress, so shear or tensile failure may occur. Thus, mixture gas (including pure CO2/N2) injection must be controlled by coal wellbore failure, providing an accurate estimation of in-situ coal seams’ CO2 storage capacity from the perspective of wellbore stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.