Abstract

AbstractThe critical conditions for dislocation nucleation from the surface steps of various geometries are analyzed based on the Peierls-Nabarro dislocation model. By modeling a surface step as part of a three- dimensional crack surface, the half space problem is transferred into an equivalent three dimensional crack problem in an infinite medium. The profiles of embryonic dislocations, corresponding to the relative displacements between the two adjacent atomic layers along slip planes, are then rigorously solved through the variational boundary integral method. The critical conditions for dislocation nucleation are determined by solving the stress dependent activation energies required to activate embryonic dislocations from their stable to unstable saddle point configurations. For a given slip plane, the effects of step geometry such as the step height and inclined angle on dislocation nucleation are analyzed in detail. The results show that the atomic scale steps may reduce the critical stress required for dislocation nucleation from the surface by several factors. Compared to previous analyses of this type of problem based on continuum elastic dislocation theory, the presented analysis eliminates the uncertain core cutoff parameter by allowing for the existence of an extended dislocation core as the embryonic dislocation evolves. Because of the serious limitation of direct atomic simulation for this type of problem, the presented methodology of incorporating atomic information into continuum approach appears to be particularly noteworthy for providing insights of energetics of the atomic processes involved in dislocation nucleation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.