Abstract

Conjugation, or mating, plays a profound role in bacterial evolution by spreading genes that allow bacteria to adapt to and colonize new niches. ICEBs1, an integrative and conjugative element of Bacillus subtilis, can transfer itself and mobilize resident plasmids. DNA transfer is mediated by a type IV secretion system (T4SS). Characterized components of the ICEBs1 T4SS include the conserved VirB4-like ATPase ConE, the bifunctional cell wall hydrolase CwlT, and the presumed VirD4-like coupling protein ConQ. A fusion of ConE to green fluorescent protein (GFP) localizes to the membrane preferentially at the cell poles. One or more ICEBs1 proteins are required for ConE's localization at the membrane, as ConE lacks predicted transmembrane segments and ConE-GFP is found dispersed throughout the cytoplasm in cells lacking ICEBs1. Here, we analyzed five ICEBs1 genes to determine if they are required for DNA transfer and/or ConE-GFP localization. We found that conB, conC, conD, and conG, but not yddF, are required for both ICEBs1 transfer and plasmid mobilization. All four required genes encode predicted integral membrane proteins. conB and, to some extent, conD were required for localization of ConE-GFP to the membrane. Using an adenylate cyclase-based bacterial two-hybrid system, we found that ConE interacts with ConB. We propose a model in which the ICEBs1 conjugation machinery is composed of ConB, ConC, ConD, ConE, ConG, CwlT, ConQ, and possibly other ICEBs1 proteins, and that ConB interacts with ConE, helping to recruit and/or maintain ConE at the membrane. Conjugation is a major form of horizontal gene transfer and has played a profound role in bacterial evolution by moving genes, including those involved in antibiotic resistance, metabolism, symbiosis, and infectious disease. During conjugation, DNA is transferred from cell to cell through the conjugation machinery, a type of secretion system. Relatively little is known about the conjugation machinery of Gram-positive bacteria. Here, we analyzed five genes of the integrative and conjugative element ICEBs1 of Bacillus subtilis. Our research identifies four new components of the ICEBs1 conjugation machinery (ConB, ConC, ConD, and ConG) and shows an interaction between ConB and ConE that is required for ConE to associate with the cell membrane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.