Abstract

For a special critical point at zero temperature,Tc=0, which is called the displacive limit of a classical or of a quantum-mechanical model showing displacive phase transitions, we derive a set of static critical exponents in the large-n limit. Due to zero-point motions and quantum fluctuations at low temperatures, the exponents of the quantum model are different from those of the classical model. Moreover, we report results on scaling functions, corrections to scaling, and logarithmic factors which appear ford=2 in the classical case and ford=3 in the quantum-mechanical case. Zero-point motions cause a decrease of the critical temperature of the quantum model with respect to the classicalTc, which implies a difference between the classical and the quantum displacive limit. However, finite critical temperatures are found in both cases ford>2, while critical fluctuations still occur atTc=0 for 0<d≦2 in the classical case and for 1 <d≦2 in the quantum model. Further we derive the slope of the critical curve at the classical displacive limit exactly. The absence of 1/n-corrections to the exponents of the classical model is also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.