Abstract

We present a numerical study of the critical behavior of the nonequilibrium zero-temperature random field Ising model in two dimensions on a triangular lattice. Our findings, based on the scaling analysis and collapse of data collected in extensive simulations of systems with linear sizes up to L=65536, show that the model is in a different universality class than the same model on a quadratic lattice, which is relevant for a better understanding of model universality and the analysis of experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.