Abstract

We investigate the effects of quenched bond randomness on the critical properties of the two-dimensional ferromagnetic Ising model embedded in a triangular lattice. The system is studied in both the pure and disordered versions by the same efficient two-stage Wang-Landau method. In the first part of our study, we present the finite-size scaling behavior of the pure model, for which we calculate the critical amplitude of the specific heat's logarithmic expansion. For the disordered system, the numerical data and the relevant detailed finite-size scaling analysis along the lines of the two well-known scenarios-logarithmic corrections versus weak universality--strongly support the field-theoretically predicted scenario of logarithmic corrections. A particular interest is paid to the sample-to-sample fluctuations of the random model and their scaling behavior that are used as a successful alternative approach to criticality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.