Abstract

In this work we investigate the stationary states of a nonequilibrium mixed-spin Ising model on a square lattice. The model system consists of two interpenetrating sublattices of spins sigma=1/2 and S=1, and we take only nearest neighbor interactions between pairs of spins. The system is in contact with a heat bath at temperature T and subject to an external flux of energy. The contact with the heat bath is simulated by single spin flips according to the Metropolis rule, while the input of energy is mimicked by the simultaneous flipping of pairs of neighboring spins. We performed Monte Carlo simulations on this model in order to find its phase diagram in the plane of temperature T versus the competition parameter between one- and two-spin flips, p. The phase diagram of the model exhibits two ordered phases with sublattice magnetizations m(1), m(2)>0 and m(1)>0, m(2)<0. These phases are separated from the paramagnetic phase (m(1)=m(2)=0) by continuous transition lines. We found the static critical exponents along these lines and showed that this nonequilibrium model belongs to the universality class of the two-dimensional equilibrium Ising model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.