Abstract

The critical behavior of the Lyapunov exponent near the transition to robust chaos via type-III intermittency is determined for a family of one-dimensional singular maps. Critical boundaries separating the region of robust chaos from the region where stable fixed points exist are calculated on the parameter space of the system. A critical exponent β expressing the scaling of the Lyapunov exponent is calculated along the critical curve corresponding to the type-III intermittent transition to chaos. It is found that β varies on the interval 0 ⩽ β < 1/2 as a function of the order of the singularity of the map. This contrasts with earlier predictions for the scaling behavior of the Lyapunov exponent in type-III intermittency. The variation of the critical exponent β implies a continuous change in the nature of the transition to chaos via type-III intermittency, from a second-order, continuous transition to a first-order, discontinuous transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.