Abstract
A simple model for amorphous solids, consisting of a triangular lattice with a fraction of attenuated bonds randomly distributed (which simulate the presence of defects in the surface), is used here to find out, by using grand canonical Monte Carlo simulations, how the adsorption thermodynamics of repulsively interacting monomers is modified with respect to the same process in the regular lattice. The degree of disorder of the surface is tunable by selecting the values of (1) the fraction of attenuated bonds ρ (0 ≤ρ≤ 1) and (2) the attenuation factor r (0 ≤r≤ 1), where r is defined as the ratio between the value of the lateral interaction associated to an attenuated bond and that corresponding to a regular bond. Adsorption isotherm and differential heat of adsorption calculations have been carried out showing and interpreting the effects of the disorder. A rich variety of behavior has been observed for different values of ρ and r, varying between two limit cases: bond-diluted lattices (r = 0 and ρ≠ 0) and regular lattices (r = 1 and any value of ρ). In addition, the critical behavior of the system was studied, showing that the order-disorder phase transition observed for the regular lattice survives, though with modifications, above a critical curve (ρ-r-temperature).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.