Abstract

We study the behavior of quasinormal modes in a top-down holographic dual corresponding to a strongly coupled mathcal{N}=4 super Yang-Mills plasma charged under a U(1) subgroup of the global SU(4) R-symmetry. In particular, we analyze the spectra of quasi-normal modes in the external scalar and vector diffusion channels near the critical point and obtain the behavior of the characteristic equilibration times of the plasma as the system evolves towards the critical point of its phase diagram. Except close to the critical point, we observe that by increasing the chemical potential one generally increases the damping rate of the quasinormal modes, which leads to a reduction of the characteristic equilibration times in the dual strongly coupled plasma. However, as one approaches the critical point the typical equilibration time (as estimated from the lowest non-hydrodynamic quasinormal mode frequency) increases, although remaining finite, while its derivative with respect to the chemical potential diverges with exponent -1/2. We also find a purely imaginary non-hydrodynamical mode in the vector diffusion channel at nonzero chemical potential which dictates the equilibration time in this channel near the critical point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call