Abstract

We examine the phase behavior of a quasi-one-dimensional system of hard squares with side-length σ, where the particles are confined between two parallel walls and only nearest-neighbor interactions occur. As in our previous work [Gurin, Varga, and Odriozola, Phys. Rev. E 94, 050603 (2016)]2470-004510.1103/PhysRevE.94.050603, the transfer operator method is used, but here we impose a restricted orientation and position approximation to yield an analytic description of the physical properties. This allows us to study the parallel fluid-like to zigzag solid-like structural transition, where the compressibility and heat capacity peaks sharpen and get higher as H→H_{c}=2sqrt[2]-1≈1.8284 and p→p_{c}=∞. Here H is the width of the channel measured in σ units and p is the pressure. We have found that this structural change becomes critical at the (p_{c},H_{c}) point. The obtained critical exponents belong to the universality class of the one-dimensional Ising model. We believe this behavior holds for the unrestricted orientational and positional case.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call