Abstract
The phase transition behavior of a dimer model on a three-dimensional lattice is studied. This model is of biological interest because of its relevance to the lipid bilayer main phase transition. The model has the same kind of inactive low-temperature behavior as the exactly solvable Kasteleyn dimer model on a two-dimensional honeycomb lattice. Because of low-temperature inactivity, determination of the lowest-lying excited states allows one to locate the critical temperature. In this paper the second-lowest-lying excited states are studied and exact asymptotic results are obtained in the limit of large lattices. These results together with a finite-size scaling ansatz suggest a logarithmic divergence of the specific heat aboveTc for the three-dimensional model. Use of the same ansatz recovers the exact divergence (α=1/2) for the two-dimensional model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.