Abstract

We study a quantum point contact in a quantum spin Hall insulator. It has recently been shown that the Luttinger liquid theory of such a structure maps to the theory of a weak link in a Luttinger liquid with spin with Luttinger liquid parameters g_\rho = 1/g_\sigma = g < 1. We show that for 1/2<g<1, the pinch-off of the point contact as a function of gate voltage is controlled by a novel quantum critical point, related to a nontrivial intermediate fixed point found previously in the Luttinger liquid model. We predict that the dependence of the conductance on gate voltage and temperature near the pinch-off transition collapses onto a universal curve described by a crossover scaling function. We compute the conductance, the critical exponents and the scaling function in solvable limits, which include g=1-\epsilon, g=1/2+\epsilon and g=1/\sqrt{3}. These results, along with a general scaling analysis provide an overall picture of the critical behavior as a function of g. In addition, we analyze the structure of the four terminal conductance of the point contact in the weak tunneling and weak backscattering limits. We find that different components of the conductance can have different temperature dependence. We identify a skew conductance G_{XY}, which we predict vanishes as T^\gamma with \gamma\ge 2. This behavior is a direct consequence of the unique edge state structure of the quantum spin Hall insulator. Finally, we show that for g<1/2 the presence of spin non conserving spin orbit interactions leads to a novel time reversal symmetry breaking insulating phase. In this phase, the transport is carried by spinless chargons and chargeless spinons. These lead to nontrivial correlations in the low frequency shot noise. Implications for experiments on HgCdTe quantum well structures will be discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call