Abstract
An organic Mott-insulator κ-(BEDT-TTF)2Cu[N(CN)2] Cl(κ-Cl) on SiO2/Si substrate showed an ambipolar field-effect-transistor (FET) characteristics without any hysteresis, which means a continuous Mott-transition at filling-controlled regime (BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene). In order to extract the critical exponent in the vicinity of the Mott-insulating phase, an analysis based on Efros-Shklovskii approximation is performed. The model fitting well reproduces the device characteristics over wide range of temperature and gate voltage. In this analysis, Coulomb gap temperature that characterizes the ground state of doped Mott-insulator shows inversely proportional critical behavior against the doping concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.