Abstract
Interactions in dispersions have been studied using light scattering techniques applied to microemulsions. In these systems, hard sphere interactions are dominant. The remaining interactions (van der Waals, etc.) are usually attractive and short-ranged and can be treated as perturbations. However, close to phase transitions where the microemulsion separates into two other microemulsions, the attractive part of the potential becomes large and behaves as if long range interactions were present; the characteristics of the scattered light can also be interpreted by assuming that the system is close to a critical consolute point. The low interfacial tensions (measured between the two microemulsions in equilibrium using surface light scattering techniques) and the large interfacial thicknesses (deduced from optical reflectivity) are consistent with the picture in terms of critical phenomena.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.