Abstract

The critical properties of perovskite manganite La0.67Pb0.33Mn1−xCoxO3 (0≤x≤0.08) around the paramagnetic–ferromagnetic phase transition are investigated through various techniques such as the modified Arrott plot, Kouvel–Fisher method and critical isotherm analysis. Though the nature of this transition was found to be in second order, the estimated critical exponents β (0.233≤β≤0.368), γ (1.03≤γ≤1.40) and δ (4.32≤δ≤5.54) are in between the theoretically predicted values for three-dimensional Heisenberg and tricritical mean-field model. This model suggests the coexistence of the short-range and long-range ferromagnetic orders around the critical temperature. The values of the critical exponents obtained from different methods and the well-obeyed scaling behavior confirm that the calculated exponents are unambiguous and purely intrinsic to the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.