Abstract

Understanding the influence of formulation and storage conditions on rhBMP-2 bioactivity is extremely important for its clinical application. Reports in the literature show that different research groups employ different parameters such as formulation conditions, storage, doses for in vivo applications etc. that makes it difficult to correlate results from different experiments. We therefore decided to rationalize these anomalies by performing a basic study on such parameters using two commercially available BMPs. Our in vitro experiments suggest that BMPs from different sources have significant differences in their bioactivity. The clinically approved rhBMP-2 (InductOs®; BMP-P) showed superior stability, compared to rhBMP-2 from R&D Systems (BMP-R) at physiological pH (determined by ALP assay). This BMP-P also showed lower binding to polypropylene Eppendorf tube. The BMP-R almost lost its bioactivity within 30min at physiological pH and also shows more adhesion to plastic surfaces. This aggregation behavior was unequivocally ascertained by performing light scattering studies of the two BMPs, which revealed linear aggregation with time for BMP-R unlike BMP-P. The in vitro results were also reflected in the in vivo experiments, in a rat ectopic model with injectable hyaluronic acid (HA) hydrogel as BMP carrier. After 7weeks post-implantation we observed larger bone volume with oriented collagen in the BMP-P group but a smaller bone with disoriented collagen in the BMP-R case. Our results highlight the large difference in activity between seemingly identical substances and also the importance of proper handling of such sensitive proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.