Abstract

Biomolecular condensates are membraneless cellular compartments generated by phase separation that regulate a broad variety of cellular functions by enriching some biomolecules while excluding others. Live-cell single particle tracking of individual fluorophore-labeled condensate components has provided insights into a condensate's mesoscopic organization and biological functions, such as revealing the recruitment, translation, and decay of RNAs within ribonucleoprotein (RNP) granules. Specifically, during dual-color tracking, one imaging channel provides a time series of individual biomolecule locations, while the other channel monitors the location of the condensate relative to these molecules. Therefore, an accurate assessment of a condensate's boundary is critical for combined live-cell single particle-condensate tracking. Despite its importance, a quantitative benchmarking and objective comparison of the various available boundary detection methods is missing due to the lack of an absolute ground truth for condensate images. Here, we use synthetic data of defined ground truth to generate noise-overlaid images of condensates with realistic phase separation parameters to benchmark the most commonly used methods for condensate boundary detection, including an emerging machine-learning method. We find that it is critical to carefully choose an optimal boundary detection method for a given dataset to obtain accurate measurements of single particle-condensate interactions. The criteria proposed in this study to guide the selection of an optimal boundary detection method can be broadly applied to imaging-based studies of condensates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call