Abstract

Dissolved organic matter (DOM) can play a major role in determining availability of pollutants to aquatic biota. Equilibrium dialysis is the most commonly used method to assess the interaction between DOM and organic contaminants. However, results obtained through this method can be affected by confounding factors linked to the diffusion of DOM through the membrane or the interaction of DOM and/or the compounds with the membrane itself. In this study, we propose an improved experimental approach, where highly hydrophilic cellulose-ester membranes with small molecular cut-off (100–500 Da) were used to overcome some of these hindrances. The performance of the method to determine the binding of a commonly used moderately hydrophobic herbicide (Isoproturon - ISU) with natural DOM was critically evaluated through a set of quality assurance criteria, across a range of DOM concentrations and pH conditions. DOM trans-membrane diffusion was prevented by the smaller pore size of the dialysis membrane. Good measurement reproducibility, mass balance closure, and successful trans-membrane equilibrium of ISU were obtained. ISU showed relatively low affinity with DOM (log KDOC 1–2 L g−1), which was significantly influenced by varying pH and DOM concentration. An alternative membrane may be needed for higher pH conditions as the greater adsorption effect blurred the observation of trans-membrane equilibrium and confounding mass balance closure. The paper makes recommendations on how to avoid measurement artefacts, while considering criteria for the expected mass distribution of compounds at equilibrium and for sorption onto the membrane and surfaces of the experimental units.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.