Abstract
The identification of plant-pathogen protein-protein interactions (PPIs) is an attractive and challenging research topic for deciphering the complex molecular mechanism of plant immunity and pathogen infection. Considering that the experimental identification of plant-pathogen PPIs is time-consuming and labor-intensive, computational methods are emerging as an important strategy to complement the experimental methods. In this work, we first evaluated the performance of traditional computational methods such as interolog, domain-domain interaction and domain-motif interaction in predicting known plant-pathogen PPIs. Owing to the low sensitivity of the traditional methods, we utilized Random Forest to build an inter-species PPI prediction model based on multiple sequence encodings and novel network attributes in the established plant PPI network. Critical assessment of the features demonstrated that the integration of sequence information and network attributes resulted in significant and robust performance improvement. Additionally, we also discussed the influence of Gene Ontology and gene expression information on the prediction performance. The Web server implementing the integrated prediction method, named InterSPPI, has been made freely available at http://systbio.cau.edu.cn/intersppi/index.php. InterSPPI could achieve a reasonably high accuracy with a precision of 73.8% and a recall of 76.6% in the independent test. To examine the applicability of InterSPPI, we also conducted cross-species and proteome-wide plant-pathogen PPI prediction tests. Taken together, we hope this work can provide a comprehensive understanding of the current status of plant-pathogen PPI predictions, and the proposed InterSPPI can become a useful tool to accelerate the exploration of plant-pathogen interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.