Abstract
Concerns over non-renewable fossil fuel supply and climate change have been driving the Renaissance of bio-based materials. To substantiate environmental claims, the impacts of bio-based materials are typically quantified by applying life cycle assessment (LCA). The internationally agreed LCA standards provide generic recommendations on how to evaluate the environmental impacts of products and services but do not address details that are specifically relevant for the life cycles of bio-based materials. Here, we provide an overview of key issues and methodologies explicitly pertinent to the LCA of bio-based materials. We argue that the treatment of biogenic carbon storage is critical for quantifying the greenhouse gas emissions of bio-based materials in comparison with petrochemical materials. We acknowledge that biogenic carbon storage remains controversial but recommend accounting for it, depending on product-specific life cycles and the likely time duration of carbon storage. If carbon storage is considered, co-product allocation is nontrivial and should be chosen with care in order to: (i) ensure that carbon storage is assigned to the main product and the co-product(s) in the intended manner and (ii) avoid double counting of stored carbon in the main product and once more in the co-product(s). Land-use change, soil degradation, water use, and impacts on soil carbon stocks and biodiversity are important aspects that have recently received attention. We explain various approaches to account for these and conclude that substantial methodological progress is necessary, which is however hampered by the complex and often case- and site-specific nature of impacts. With the exception of soil degradation, we recommend preliminary approaches for including these impacts in the LCA of bio-based materials. The use of attributional versus consequential LCA approaches is particularly relevant in the context of bio-based materials. We conclude that it is more challenging to prepare accurate consequential LCA studies, especially because these should account for future developments and secondary impacts around bio-based materials which are often difficult to anticipate and quantify. Although hampered by complexity and limited data availability, the application of the proposed approaches to the extent possible would allow obtaining a more comprehensive insight into the environmental impacts of the production, use, and disposal of bio-based materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.